
Digital Object Identifier (DOI) 10.1007/s100520100752
Eur. Phys. J. C 21, 513–519 (2001) THE EUROPEAN

PHYSICAL JOURNAL C

Scaling phenomena from non-linear evolution in high energy DIS
M. Lublinskya

Department of Physics, Technion – Israel Institute of Technology, Haifa 32000, Israel

Received: 11 June 2001 / Revised version: 13 July 2001 /
Published online: 17 August 2001 – c© Springer-Verlag / Società Italiana di Fisica 2001

Abstract. The numerical solutions of the non-linear evolution equation are shown to display the “geomet-
ric” scaling recently discovered in the experimental data. The phenomena hold both for proton and nucleus
targets for all x below 10−2 and 0.25GeV2 ≤ Q2 ≤ 2.5 × 103 GeV2. The scaling is practically exact (few
percent error) in the saturation region. In addition, an approximate scaling is found in the validity domain
of the linear evolution where it holds with about 10% accuracy.
Basing ourselves on the scaling phenomena we determine the saturation scale Qs(x) and study both its x
dependence and the atomic number dependence for the nuclei.

1 Introduction

The experimental data on the structure function F2 were
recently discovered to display the exciting phenomenon
called “geometric” scaling [1]. Namely, the total γ∗p cross
section is not a function of the two independent variables
x and Q, but is rather a function of the single variable
τ = Q/Qs(x). The function Qs(x) is a new scale called the
saturation scale. The scaling holds experimentally with
10% accuracy in the whole kinematic region of x ≤ 10−2

[1].
These remarkable phenomena require theoretical ex-

planation. In fact, the scaling behavior is actually antici-
pated in high density QCD and is strongly related to the
appearance of the saturation scale [2–5]. During the in-
teraction a parton cascade is developed. When the parton
density (we mean the packing factor) is not large the trans-
verse momenta of the partons are strongly ordered. Such
a system evolves according to the linear DGLAP equa-
tion [6] which describes the gluon emission. As a result
of this radiation the number of partons rapidly increases.
However, in the high parton density phase annihilation
processes become significant and they suppress the gluon
radiation resulting in the saturation of the density. This
scenario occurs at the saturation scale Qs(x) [3,7,8], which
has the meaning of the average transverse momentum of
partons in the cascade. At photon virtualities below Qs(x)
the ordering in the momenta does not persist anymore and
all partons have the same momenta Qs(x). This is a do-
main where the evolution cannot be described by a linear
equation. A non-linear evolution should be used instead.
The scaling is a property of this kinematic region. It just
says that the very same average momentum Qs(x) in the
cascade can be approached from two directions either by
varying the virtuality Q at fixed x or vice versa. The scal-
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ing phenomena are expected at Q < Qs(x). Furthermore,
the saturation scale Qs(x) can be defined as a scale at
which the scaling breaks down.

As a result of the above discussion we conclude that the
scaling phenomena should be a consequence of the non-
linear evolution, with the non-linear effects switching on
at the saturation scale. Numerous efforts to understand
theoretically the mechanisms responsible for the parton
saturation [3,7–13] led finally to the very same non-linear
evolution equation [7,8,11–15]. A most transparent form
of this equation was obtained by Kovchegov in the color
dipole approach [12]:
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The equation is written for N(r⊥, x; b) = Imael
dipole(r⊥,

x; b) with ael
dipole being the elastic amplitude for a dipole of

size r⊥ scattered at the impact parameter b. The rapidity
Y = − ln x and Y0 = − ln x0. The ultraviolet cutoff ρ is
needed to regularize the integral, but it does not appear
in physical quantities. In the large Nc limit (number of
colors) CF = Nc/2.

Equation (1.1) describes the following physical picture.
The evolution kernel x2

01/(x2
02x2

12) is the probability for
the dipole of size x10 to decay into two dipoles of sizes x12
and x02. Then these two dipoles interact independently
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with the target (linear term in the equation). The non-
linear term in the evolution takes into account the Glauber
corrections for the interaction. These corrections are due
to the screening between the two dipoles, and hence they
contribute with a negative sign.

It can be seen from the form of (1.1) that it contains no
information about the target. The only dependence on the
target is coded in the initial conditions of the evolution at
some initial value x0. We take for the initial conditions the
Glauber–Mueller (GM) formula, which has been proven
to be a correct initial distribution for nuclear targets [12].
For the proton target we also use the Glauber–Mueller
formula. However, in this case the procedure is less jus-
tified theoretically and we rely in our choice on the fact
that this formula describes well the experimental data at
not too low x. The initial conditions are

N(x01, x0; b) = NGM(x01, x0; b), (1.2)

with

NGM(x01, x; b)

= 1 − exp
[
−αSπx2

01

2NcR2 xGDGLAP(x, 4/x2
01)S(b)

]
. (1.3)

Equation (1.3) takes into account the multiple dipole–
target interaction in the eikonal approximation [16–18].
The
gluon density xGDGLAP is a solution of the DGLAP equa-
tion [6]. The function S(b) is a dipole profile function in-
side the target, while R stands for its radius.

It is worth to stress that all physical results derived
from the solution of (1.1) display a certain sensitivity to
the initial conditions. This sensitivity dies out at very low
x. Note that the unitarized form of the initial conditions
(1.2) implies the existence of the saturation scale even
at the beginning of the evolution (x = x0). However, for
our phenomenologically motivated choice for the initial
conditions (1.2) and x0 = 10−2 the saturation scale Qs(x0)
is much smaller than 1 GeV.

Solutions to (1.1) were studied in the asymptotic limits
in [4,5]. Numerical solutions of (1.1) were reported in [15,
19–21]. We continue studying the properties of the solu-
tions obtained in [19,21]. In the present work we concen-
trate on the scaling phenomena displayed by the solutions
of (1.1). Indeed, it was shown in [5] that in the double log-
arithmic approximation, the solutions of (1.1) scale with
a good accuracy in a wide high energy region. The re-
cent paper [20] reports on the numerical observation of
the scaling phenomena.

The main goal of the present paper is to discover the
scaling phenomena in the solutions for both proton and
nuclei obtained in the [19,21]. Basing ourselves on this
property we determine the saturation scale Qs(x) and for
nuclei we study its A dependence.

This paper is organized as follows. Section 2 is devoted
to the scaling phenomena and saturation scale for the pro-
ton. The scaling on nuclei is investigated in Sect. 3. The
final section, Sect. 4, concludes the work.
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Fig. 1. Solutions of (1.1) as a function of distance. The dif-
ferent curves correspond to solutions at x = 10−7 (the upper
curve), 10−6 and so on down to x = 10−2 (the lowest curve)

2 Scaling and saturation scale for proton

Recently [19] the non-linear evolution equation (1.1) was
solved numerically for a constant value of the strong cou-
pling constant αS = 0.25. The goals of the present research
are to further study the physical properties displayed by
the solutions of (1.1).

Compared to [19] in the present paper we slightly mod-
ified the large distance behavior of the initial conditions
at x0 = 10−2. In fact, no information about large dis-
tances is known. The GRV parameterization [22] entering
the initial conditions ends up at distances � 0.5 fm. In a
previous paper [19] the extrapolation to larger distances
was done by a constant, which does not approach unity at
the very large distances. Moreover, such initial conditions
cannot be consistent with a scaling that is a purely dy-
namical property of the evolution equation. There exists
a transition region below x = x0 = 10−2 where the solu-
tions of (1.1) are sensitive to the initial conditions. In this
transition region we do not expect to observe any scaling
phenomena. The transition region is estimated to end up
at x � 10−4. Below x � 10−4 the initial conditions are
forgotten and the dynamics is governed by the pure evo-
lution. Then the scaling sets in and indeed it is seen in the
solutions obtained in [19].

In order to eliminate the transition region, in the
present work we extrapolate the large distance behavior
of the initial conditions consistently with the asymptotics
and the scaling. The following procedure can be suggested.
We take a solution of [19] at some x well below the transi-
tion region, say at x = 10−6. Appropriately rescaled this
solution is used for the large distance extrapolation of the
initial conditions at x = 10−2. The above described im-
provement of the initial conditions modifies slightly the
large distance behavior of the solution in the transition
region 10−4 ≤ x ≤ 10−2 and restores the scaling in this
region. Note that in a sense our procedure already implies
scaling at very large distances.

The solutions obtained Ñ(r⊥, x) ≡ N(r⊥, x; b = 0)
are displayed in Fig. 1. The different curves correspond to
the different values of x. As can be seen from Fig. 1, at
any fixed x the solution Ñ behaves in a step-like manner
as a function of distance: at small distances it tends to
zero, while at larger distances the saturation value unity
is approached.
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The impact parameter dependence of the function N
can be restored using the following ansatz:

N(r⊥, x; b) = (1 − e−κ(x,r⊥)S(b)), (2.4)

with
κ(x, r⊥) = − ln(1 − Ñ(r⊥, x)). (2.5)

In [19] this ansatz was shown to be a quite good approxi-
mation of the exact b dependence of the solution.

2.1 Scaling phenomena

In this section we study a possible scaling behavior of the
solution Ñ . As has been mentioned, the double logarith-
mic approximation of the solutions of the master equation
(1.1) [5] as well as general analyses of similar non-linear
equations [2] predict this new scaling phenomenon in the
saturation region r⊥ > 1/Qs(x). In the saturation region
this scaling implies the dipole–target amplitude to be a
function of only one variable τ = r2

⊥ · Q2
s (x):

Ñ(r⊥, x) ≡ Ñ(τ). (2.6)

Indeed, with proper rescaling of the variable r⊥ all the
curves in the Fig. 1 can be mapped one onto another. This
is a manifestation of the scaling property (2.6).

A rigorous numerical procedure for the scaling detec-
tion can be defined. It is useful to introduce the rapidity
variable y = ln 1/x. Let us define the following derivative
functions assuming the scaling behavior (2.6):

Ny(r⊥, x) ≡ −∂Ñ

∂y
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d ln x
, (2.7)
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From (2.7) and (2.8) one can see that the ratio Ny/Nr

is a function of only one variable x:

Ra(r⊥, x) ≡ Ny

Nr
=

d ln Q2
s (x)

d ln x
. (2.9)

Our goal is to investigate the above ratio from the
solutions obtained. In Fig. 2 the derivative functions Nr

and Ny are plotted versus r⊥ for various values of x. One
can clearly observe a similarity in the behavior of these
functions. This is actually a sign of the scaling phenom-
ena. Both functions, Nr and Ny, possess extremum points
at which the derivatives with respect to r⊥ vanish. If the
scaling behavior takes place then it follows from (2.6) that
both Nr and Ny are extreme at the same points. In fact,
this condition is clearly observed with a very good accu-
racy (Fig. 2).

In order to establish the scaling phenomena numeri-
cally we have to check if the function Ra is indeed r⊥
independent. However, it is clear that we cannot expect
exact numerical independence. So, a numerical criterion
for the scaling existence has to be defined. In this paper we
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Fig. 2. The derivative functions Nr (dashed line) and Ny (solid
line) as functions of the distance r⊥
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Fig. 3. The scaling as a function of the distance r⊥. The pos-
itive curves are Nr/Nr,min (dashed line) and Ny/Ny,min (solid
line). The dotted line is 20 × Ra

study scaling within the distance interval 0.04 GeV−1 ≤
r⊥ ≤ 10 GeV−1 that corresponds to 0.25 GeV2 ≤ Q2 ≤
2.5 × 103 GeV2. Since the experimental accuracy for the
scaling is about 10% we define the following condition for
its acceptance:

max∆Ra
max∆Nr,y

≤ 10%, (2.10)

where max∆Ra is a maximal variation (in percents)
within the interval of interest of the function Ra with the
distance r⊥ at fixed x. The functions max∆Nr,y are simi-
larly defined. The condition (2.10) says that we accept for
the scaling some small r⊥ dependence of the function Ra
in a scale of large variations of the functions Nr and Ny.

Figure 3 presents the main results. The three lines cor-
respond to the functions Nr and Ny divided by their min-
imal values within the interval, and the function Ra is
multiplied by the factor 20 as can be seen on the scale.

The function Ra is clearly observed to be a very slowly
varying function of r⊥ for all values of x and r⊥. Though
at fixed x the function Ra cannot be claimed to be exactly
constant; its variations with r⊥ are very much suppressed
compared to the variations of the functions Nr and Ny.
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For example, at x = 10−5 within the given interval the
function Ra changes by a maximum of 15%. Within the
very same interval both functions, Nr and Ny, change sev-
eral times. Then the relative fluctuation is much less than
10%, which according to the condition (2.10) confirms the
scaling. The phenomenon holds with a few percent accu-
racy and it improves at smaller x � 10−7 and in the deep
saturation region. However, to observe this scaling behav-
ior in these regions is numerically more problematic, since
both derivatives Nr and Ny tend to zero.

As was discussed in the introduction, we should ex-
pect the scaling violation at distances of order 1/Qs(x).
The shorter distances are in the realm of applicability of
the linear equation which is not supposed to display any
scaling phenomena. Nevertheless, we observe the scaling
actually to exist also at distances which are much shorter
than the saturation scale. The above statements seem to
contradict each other. We believe, however, that the res-
olution of the paradox is in the linear equation which in
fact exhibits an approximate scaling behavior [5]. Unfor-
tunately, this numerical coincident prevents us from deter-
mination of the saturation scale as a scale of the scaling
violation.

2.2 Saturation scale

No exact mathematical definition of the saturation scale
is known so far. In [19] two definitions of the saturation
scale were proposed and the solutions obtained from (1.1)
were used for its determination. For the step-like function
it is natural to define the saturation scale as a position
where Ñ = 1/2:

Definition 1:
Ñ(2/Qs, x) = 1/2. (2.11)

An alternative definition of the saturation scale is

Definition 2:

κ ≡ − ln[1 − Ñ(2/Qs, x)] = 1/2. (2.12)

The latter definition is related to the b dependence of
the solution and is motivated by the GM formula with κ
being the gluon packing factor1. This definition is equiva-
lent to Ñ(2/Qs, x) � 0.4 which predicts a somewhat larger
saturation scale Qs(x) comparing with (2.11). The satura-
tion scales obtained through (2.11) and (2.12) are plotted
in Fig. 4a.

The saturation scale can be deduced directly from the
scaling property (2.6) which has been established. To this
goal we can regard (2.9) as a new definition of the satu-
ration scale:

1 In the present paper as well as in the previous papers [19,
21] we do not deduce the saturation scale Qs but rather the
dipole saturation radius Rs. The equality Qs ≡ 2/Rs is mo-
tivated by the double logarithmic approximation. Though for
(1.1) this approximation is not justified, we still believe it to
make reliable estimates provided Qs is sufficiently large
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Fig. 4a–c. The saturation scale Qs is plotted as a function
of x. a The scales obtained from (2.11) (solid line) and (2.12)
(dashed line); b now (2.14) is used to determine the scale.
c The result obtained from (2.15)

Definition 3:

d ln Q2
s (x)

d ln x
= Ra(r⊥, x) = const(r⊥). (2.13)

This definition allows us to determine the energy de-
pendence of the saturation scale. Note from Fig. 3 that the
function Ra is practically independent of x, Ra � −0.7.
Hence we obtain from (2.13) the power law dependence of
the saturation scale on x:

Qs(x) = Qs0x
−q = Qs0e−q ln x; q = 0.35 ± 0.04. (2.14)

The obtained dependence of the saturation scale on x is
somewhat weaker than both the double logarithmic pre-
diction q = 2αSNc/π [5] and the numerical result of [20]
but significantly stronger than the GW saturation model
qGW = 0.288/2 [23]. Unfortunately, the parameter Qs0
cannot be deduced from the scaling analysis only. In or-
der to make some estimates we choose two reasonable val-
ues for Qs0 just fixing the saturation scale at x = 10−4:
Qs(10−4) = 1 GeV and Qs(10−4) = 1.5 GeV. The ob-
tained results are plotted in Fig. 4b.

The physical meaning of the scale at which both Nr

and Ny are extreme is that at this scale (which is a func-
tion of x) the non-linear effects responsible for the sat-
uration set in. Thus it is natural to suggest yet another
definition of the saturation scale.
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Definition 4:(
∂2Ñ

∂r2
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)
r2

⊥=4/Q2
s (x)

� ∂

∂r2
⊥

(
r2
⊥

∂Ñ

∂r2
⊥

)
r2

⊥=4/Q2
s (x)

= 0.

(2.15)
It is important to stress that the definitions (2.13) and

(2.15) are not equivalent, and no one is a consequence of
any other. However, if we suppose that κ ∼ (r2

⊥)1−γ in
analogy with the GM formula, then the two definitions
(2.13) and (2.15) are equivalent.

Figure 4c shows the saturation scale Qs(x) obtained
from (2.15) as a function of x. The values presented are de-
duced with few percent errors. Figure 4c predicts smaller
saturation scales compared with the ones from Fig. 4a.
This fact can be naturally explained if we suppose again
that κ ∼ (r2

⊥)1−γ . Then it is easy to show that the defi-
nition (2.15) corresponds to the condition κ(x, 2/Qs) = 1,
which implies Ñ(2/Qs, x) = 1 − 1/e � 0.63. Hence, the
saturation is obtained at larger distances.

Finally it is worth to comment on the b dependence of
the saturation scale. All the results presented above are
obtained for b = 0. It follows from the ansatz (2.4) that the
b dependence of the saturation scale factorizes: Qs(x; b) =
Qs(x; 0) · S′(b) with S′ being a decreasing function of b.
Within the assumption κ ∼ (r2

⊥)1−γ the function S′(b)
can be related to the dipole profile function S(b): S′ =
S1/2(1−γ).

3 Scaling phenomena for nuclei

Solutions of (1.1) were obtained for nucleus targets in a re-
cent paper [21]. All details about the solutions for the six
nuclei Au197, Nd150, Mo100, Zn70, Ca40, and Ne20 can be
found there. In the present work the only modification we
perform is again concerned with the large distance extrap-
olation of the initial conditions. To this goal we use the
Glauber formula for the initial conditions. For the nucleon
cross section we use the result of the previous section.
This way we discover that the Glauber formula extrapo-
lates the large distance behavior of the initial conditions
consistently with both the asymptotics and scaling. The
solutions obtained, ÑA(r⊥, x), display a similar step-like
behavior as in the proton case (Fig. 1).

In this section we investigate the scaling phenomena
for nuclei following the very same strategy as presented
above. We start from computations of the derivative func-
tions NrA and NyA for the nuclei, where the subscript A
stands for the atomic number of a nucleus. In fact, de-
pendences quite similar to Figs. 2 and 3 are obtained. Fig-
ure 5 presents an example of calculations for the heaviest
nucleus, Au. Since in our approach the solution for Ne is
almost identical to the proton (see [21] for a discussion)
the Ne nucleus displays exactly the same scaling phenom-
ena as the proton.

The scaling on gold is observed from Fig. 5. The other
nuclei display the very same phenomenon. Though for nu-
clei the numerical fluctuations are larger it holds within at
least 10% accuracy with respect to the condition (2.10).
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Fig. 6a,b. The saturation scale Qs is plotted as a function
of x for the four nuclei Au, Mo, Ca, and Ne. a This result is
obtained from (2.15); b the result from (2.12) [21]

The ratio RaA(x) is almost x independent, with less
than 20% fluctuations. Moreover, within the same accu-
racy it is an A independent function as well. Recalling the
definition (2.13) of the saturation scale, we obtain

Qs(x) = Qs0(A)x−qN ; qN � 0.32 ± 0.05. (3.16)

The power qN is similar to the power q obtained for the
proton. Note that the A dependence of the saturation scale
is found to be x independent: Qs0(A) ∼ Ap1 , where p1 is a
constant. As was explained for the proton case, the initial
values Qs0(A) and hence the power p1 cannot be deduced
from the scaling behavior only.

The saturation scales according to the definition (2.15)
are shown in Fig. 6a for the four nuclei Au, Mo, Ca, and
Ne. The numerical errors do not exceed 10%. For the sake
of comparison we present in the Fig. 6b the saturation
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Table 1. The power p2(x) for various values of x

Nuclei \x 10−7 10−6 10−5 10−4 10−3

Light 0.20 0.23 0.26 0.26 0.29
Heavy 0.18 0.18 0.22 0.22 0.26
All 0.19 0.20 0.23 0.23 0.27

scale obtained from (2.12) [21]. From the saturation scale
obtained we can deduce its dependence on the atomic
number A, where the power law Qs ∼ Ap2(x) is assumed.
All the nuclei are divided on two groups: light nuclei (Ne,
Ca, Zn) and heavy nuclei (Zn, Mo, Nd, and Au). Table 1
presents the powers p2 for various values of x. The relative
errors in the table are estimated not to exceed 20%. On
one hand, the power p2 is seen to decrease with decreasing
x. This observation agrees with the results of [21]. On the
other hand, it can be deduced from Table 1 that within
the errors the power p2(x) can be viewed as a constant
and its average value is in a perfect agreement with the
value 2/9 – the result of [20].

The scaling phenomena described above reveal them-
selves in the energetic gain for performing experiments on
heavy nuclei. The solution for one nucleus at given x coin-
cides with the solution for other nuclei but at different x:

ÑA1(r⊥, x) � ÑA2(r⊥, λ(A1, A2)x). (3.17)

The coefficient λ turns out to be x independent (for exam-
ple λ(Ne, Au) � 5). The relation (3.17) is a consequence of
the scaling phenomena implying Qs,A1(x) � Qs,A2(λ(A1,
A2)x). This leads to the relation(

A1

A2

)p2

� λ−qN . (3.18)

For Au and Ne this relation gives λ(Ne, Au) � 5 in total
agreement with the direct analysis of the solutions.

4 Conclusions

In the present paper the scaling phenomena in DIS were
studied. The research concentrated on the non-linear evo-
lution equation (1.1) governing the dynamics. The solu-
tions to this equation were recently found numerically in
[19] for the proton target and in [21] for the nuclei.

A criterion for the scaling based on the solution of
the non-linear evolution was defined and checked numer-
ically. For the proton we found scaling in all kinematic
regions of study (10−7 ≤ x ≤ 10−2, 0.25 GeV2 ≤ Q2 ≤
2.5 × 103 GeV2) and with a very good accuracy: of the or-
der of a few percents (≤ 5%). The result is in agreement
with the discovery of the scaling in the experimental data
on the structure function F2 [1]. The scaling behavior is
predicted to improve at the LHC and THERA energies.
It is important to note that scaling phenomena exist also
at distances much shorter than the saturation scale [5].
At very short distances, where linear evolution occurs, no
scaling should be observed. Nevertheless we found that
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Fig. 7a,b. The average saturation scale Qs as a function of x.
a The result for the proton; b the result for the nuclei

this scaling exists numerically with about 10% accuracy
and we are not able to detect its violation.

The solution found in [19] of the non-linear equation
was used to estimate the saturation scale Qs(x). In the
present work we gave two new definitions of the satura-
tion scale based on the scaling phenomena. In spite of con-
siderable uncertainty in the value of the saturation scale
all the definitions predict that it grows with decreasing x
in accordance with the theoretical expectations [3,7–9]. If
we allow ourselves to average all the results for the sat-
uration scale depicted in Fig. 4 we would obtain the pre-
diction shown in Fig. 7a. The relative errors for the latter
are roughly 30% for all x, which indicates the uncertainty
in the saturation scale definition.

The scaling phenomena were observed for the nuclear
targets; these confirm the conclusions of [20]. The satura-
tion scale estimated from the scaling displays a power law
dependence on both the atomic number A and the energy
variable x: Qs,A(x) ∼ Ap2x−qN . The value obtained for
the power p2 is in a good agreement with the value 2/9
deduced in [20].

Both the values of the nucleus saturation scales and
their A dependence obtained in the present paper are
slightly different from the ones found in the [21]. The main
source of this effect certainly comes from the difference
in the saturation scale definitions. Since we do not know
what definition is better we combine all the information
we have, proceeding similarly to the proton case. The re-
sults of this procedure are presented in Fig. 7b. We hope
that our predictions of the saturation scales Qs,A for var-
ious nuclei will serve as a theoretical basis for the RHIC
data analysis in high parton density QCD [24].

Acknowledgements. I wish to thank Eugene Levin for his inspi-
ration and support of this work. I am also very grateful to E.
Gotsman, U. Maor, and K. Tuchin for illuminating discussions
on the subject.



M. Lublinsky: Scaling phenomena from non-linear evolution in high energy DIS 519

References

1. K. Golec-Biernat, J. Kwiecinski, A.M. Stasto, Phys. Rev.
Lett. 86, 596 (2001)

2. J. Bartels, E. Levin, Nucl. Phys. B 387, 617 (1992)
3. L. McLerran, R. Venugopalan,Phys. Rev. D 49, 2233, 3352

(1994); D 50, 2225 (1994); D 53, 458 (1996); D 59, 094002
(1999)

4. Yu. Kovchegov, Phys. Rev. D 61, 074018 (2000); E. Levin,
K. Tuchin, Nucl. Phys. B 573, 833 (2000); Non-linear
evolution and saturation for heavy nuclei in DIS, hep-
ph/01012175

5. E. Levin, K. Tuchin, New scaling in high energy DIS, hep-
ph/0012167

6. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438
(1972); G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298
(1977); Yu.L. Dokshitser, Sov. Phys. JETP 46, 641 (1977)

7. L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1
(1981)

8. A.H. Mueller, J. Qiu, Nucl. Phys. B 268, 427 (1986)
9. E. Levin, M.G. Ryskin, Phys. Rep. 189, 267 (1990); J.C.

Collins, J. Kwiecinski, Nucl. Phys. B 335, 89 (1990);
J. Bartels, J. Blumlein, G. Shuler, Z. Phys. C 50, 91
(1991); E. Laenen, E. Levin, Ann. Rev. Nucl. Part. Sci. 44,
199 (1994) and references therein; A.L. Ayala, M.B. Gay
Ducati, E.M. Levin, Nucl. Phys. B 493, 305 (1997); B 510,
355 (1990); Yu. Kovchegov, Phys. Rev. D 54, 5463 (1996);
D 55, 5445 (1997); D 61, 074018 (2000); A.H. Mueller,
Nucl. Phys. B 572, 227 (2000); B 558, 285 (1999); Yu.V.
Kovchegov, A.H. Mueller, Nucl. Phys. B 529, 451 (1998)

10. J. Jalilian-Marian, A. Kovner, L. McLerran, H. Weigert,
Phys. Rev. D 55, 5414 (1997); J. Jalilian-Marian, A.
Kovner, H. Weigert, Phys. Rev. D 59, 014015 (1999);
J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert,
Phys. Rev. D 59, 034007 (1999); Erratum Phys. Rev. D
59, 099903 (1999); A. Kovner, J. Guilherme Milhano, H.
Weigert, Phys. Rev. D 62, 114005 (2000); H. Weigert, Uni-
tarity at small Bjorken x, NORDITA-2000-34-HE, hep-
ph/0004044

11. Ia. Balitsky, Nucl. Phys. B 463, 99 (1996)
12. Yu. Kovchegov, Phys. Rev. D 60, 034008 (2000)
13. E. Iancu, A. Leonidov, L. McLerran, Non-linear gluon evo-

lution in the color glass condensate, BNL-NT-00/24, hep-
ph/0011241; E. Iancu, L. McLerran, Saturation and uni-
versality in QCD at small x, hep-ph/0103032

14. A.H. Mueller, Nucl. Phys. B 415, 373 (1994)
15. M. Braun, Eur. Phys. J. C 16, 337 (2000); High energy

interaction with the nucleus in the perturbative QCD with
Nc → ∞, hep-ph/0101070

16. A.H. Mueller, Nucl. Phys. B 335, 115 (1990)
17. A. Zamolodchikov, B. Kopeliovich, L. Lapidus, JETP Lett.

33, 595 (1981)
18. E.M. Levin, M.G. Ryskin, Sov. J. Nucl. Phys. 45, 150

(1987)
19. M. Lublinsky, E. Gotsman, E. Levin, U. Maor, Non-linear

evolution and parton distributions at LHC and THERA
energies, hep-ph/0102321

20. N. Armesto, M. Braun, Parton densities and dipole cross
sections at small x in large nuclei, hep-ph/0104038

21. E. Levin, M. Lublinsky, Parton densities and saturation
scale from non-linear evolution in DIS on nuclei, Nucl.
Phys. A, in press, hep-ph/01004108

22. M. Gluck, E. Reya, A. Vogt, Eur. Phys. J. C 5, 461 (1998)
23. K. Golec-Biernat, M. Wusthoff, Phys. Rev. D 59, 014017

(1999)
24. N. Armesto, C. Pajares, Int. J. Mod. Phys. A 15, 2019

(2000), hep-ph/0002163; A. Krasnitz, R. Venugopalan,
Phys. Rev. Lett. 86, 1717 (2001); Nonpertubative gluody-
namics of high energy heavy ion collision, hep-ph/0004116;
Phys. Rev. Lett. 84, 4309 (2000); K.J. Eskola, K. Ka-
jantie, P.V. Ruuskanen, K. Tuominen, Nucl. Phys. 570,
379 (2000) and references therein; K.J. Eskola, K. Ka-
jantie, K. Tuominen, Phys. Lett. B 497, 39 (2001); K.J.
Eskola, P.V. Ruuskanen, S.S. Rasanenand, K. Tuominen,
Multiplicities and transverse energies in central AA colli-
sions at RHIC and LHC from pQCD, saturation and hy-
drodynamics, JYFL-3-01, hep-ph/0104010; D. Kharzeev,
M. Nardi, Phys. Lett. B 507, 121 (2001)


